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SUMMARY
Partial pluripotent reprogramming can reverse features of aging in mammalian cells, but the impact on so-
matic identity and the necessity of individual reprogramming factors remain unknown. Here, we used sin-
gle-cell genomics to map the identity trajectory induced by partial reprogramming in multiple murine cell
types and dissected the influence of each factor by screening all Yamanaka Factor subsets with pooled sin-
gle-cell screens. We found that partial reprogramming restored youthful expression in adipogenic and
mesenchymal stem cells but also temporarily suppressed somatic identity programs. Our pooled screens re-
vealed that many subsets of the Yamanaka Factors both restore youthful expression and suppress somatic
identity, but these effects were not tightly entangled. We also found that a multipotent reprogramming strat-
egy inspired by amphibian regeneration restored youthful expression in myogenic cells. Our results suggest
that various sets of reprogramming factors can restore youthful expression with varying degrees of somatic
identity suppression. A record of this paper’s Transparent Peer Review process is included in the supple-
mental information.
INTRODUCTION

Almost all metazoans experience aging, a process of progres-

sive decline in functionality and resilience that results in death

(Kenyon, 2010). Germline development is the only known biolog-

ical process capable of reversing or avoiding the effects of aging,

and the discovery that somatic cells can be reprogrammed to a

pluripotent state demonstrated that the stages of this develop-

mental process can be reversed (Gurdon, 1962). Seminal work

further demonstrated that cells could be reprogrammed to an

induced pluripotent stem cell (iPSC) state through induction of

four transcription factors—Sox2, Pou5f1 (Oct4), Klf4, and Myc

(SOKM) (Takahashi and Yamanaka, 2006; Yu et al., 2007).

Evidence from several groups further suggests that pluripotent

reprogramming also reverses features of aging. iPSCs gener-

ated from young and aged donors are largely indistinguishable,

and this similarity persists after differentiation into multiple fates

(Lapasset et al., 2011; Nishimura et al., 2013; Mertens et al.,

2015). This erasure of aging features does not occur in direct re-

programming protocols (Mertens et al., 2015; Kim et al., 2018),

suggesting that dedifferentiation during pluripotent reprogram-

ming is intimately related to this phenomenon.

Transient induction of SOKM in mice using an inducible germ-

line allele was reported to improve multiple physiological func-
tions in aged animals and to extend lifespan in progeroid mice

(Ocampo et al., 2016). This partial reprogramming strategy

does not generate iPSCs but rather alters gene expression

without inducing a pluripotent state in most cells. Similarly, par-

tial reprogramming was reported to reduce transcriptional fea-

tures of aging in multiple human and mouse cell types (Sarkar

et al., 2020; Lu et al., 2020; Gill et al., 2021; Shahini et al.,

2021) and to improve regenerative capacity in the heart, muscle,

and eye (Chen et al., 2021; Sarkar et al., 2020; Lu et al., 2020; Ro-

drı́guez-Matellán et al., 2020).

These striking results suggest that even transient induction of

pluripotency-associated gene regulatory networks (GRNs) is

sufficient to ameliorate features of aging. However, it remains

unclear if these effects occur uniformly in all cells and at which

stage of the reprogramming process features of aging are lost.

It is also unknown if partial reprogramming suppresses the

GRNs that establish somatic cell identity. Early reports have sug-

gested that cell identity programs are unaffected by partial re-

programming, but this stands in contrast to observations from

iPSC reprogramming experiments (Polo et al., 2012; Maza

et al., 2015; Guo et al., 2019b; Tran et al., 2019) and the known

neoplastic effects of in vivo reprogramming (Abad et al., 2013;

Ocampo et al., 2016). Likewise, it has been suggested that

some of the beneficial effects of partial reprogramming stem
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from the re-engagement of somatic cell identity programs, but

there is currently little evidence to support this hypothesis.

The necessity or sufficiency of individual pluripotency factors

to ameliorate features of aging is also unclear. The widely used

SOKM factors were identified based on their ability to induce a

pluripotent state. Given that partial reprogramming explicitly

avoids this outcome, it is plausible that only a subset of the

SOKM GRNs are necessary to reverse age-related changes.

Recent experiments suggest thatMyc is not necessary at a min-

imum (Lu et al., 2020). It is also unknown if alternative reprogram-

ming strategies (e.g., multipotent reprogramming) might also

restore youthful gene expression or if activation of the full plurip-

otency program is required.

The goal of this work is to address these unanswered ques-

tions about the effects of partial reprogramming on features of

aging and somatic identity and the necessity of individual partial

reprogramming factors to restore youthful expression. We hy-

pothesized that single-cell expression profiling of multiple cell

types during partial reprogramming would capture a series of

cell states induced by the perturbation, helping to reveal any

suppression of somatic identities that might exist. We further

reasoned that a reverse genetics screen measuring the gene

expression effects of partial reprogramming with all combina-

tions of the Yamanaka Factors would allow us to determine

which factors in the set are necessary to restore youthful

expression.

To investigate our hypothesis that somatic identity might be

suppressed by partial reprogramming, we performed partial re-

programming in primary young and aged adipogenic and

mesenchymal stem cells (MSCs) and profiled single-cell gene

expression at multiple time points after reprogramming factor

withdrawal. These experiments revealed that partial reprogram-

ming restored youthful gene expression but transiently

repressed somatic cell identity in both cell types, further sup-

ported through a re-analysis of public expression data for partial

reprogramming in diverse cell types. To perform a reverse ge-

netics screen with combinations of the Yamanaka Factors, we

developed a pooled screening system for transient transcription

factor overexpression and tested all combinations of the Yama-

naka Factors in young and aged primary cells. We found in our

screens that no single Yamanaka Factor was necessary to

restore youthful expression or suppress somatic identity, and

additional experiments revealed that even a multipotent reprog-

ramming strategy with no Yamanaka Factors could restore

youthful expression. Our primary contributions are therefore as

follows: (1) the discovery that partial reprogramming transiently

suppresses somatic cell identity in diverse cell types, orthogonal

to the effects on aging genes; (2) the discovery that no single Ya-

manaka Factor is necessary to restore youthful expression; and

(3) a demonstration that alternative, nonpluripotent reprogram-

ming can exhibit similar effects.

RESULTS

Partial reprogramming restores youthful gene
expression in aged adipogenic cells
To evaluate the effects of partial reprogramming using the Yama-

naka Factors, we designed a polycistronic tetracycline-inducible

SOKM lentivirus with a fluorescent reporter (LTV-Y4TF; Fig-
2 Cell Systems 13, 1–14, July 20, 2022
ure 1A) (Carey et al., 2009). We used LTV-Y4TF and a tetracy-

cline-transactivator lentivirus (LTV-Tet3G) to transduce primary

adipogenic cells from young (2–4 months old) and aged (20–

24 months old) C57BL/6 mice in vitro. Following transduction,

we performed a pulse/chase by adding doxycycline (Dox) to

the cell culture media for 3 days and chasing for 3 days (Fig-

ure 1B). Based on half-life references and measured transgene

abundance, we estimate that there is minimal activity of the Ya-

manaka Factor programs by the end of the chase period (Fig-

ure S1). We used a multiplicity of infection (MOI) sufficient to

transduce < 50% of cells in each condition, such that a fraction

of cells in each well are exposed to Dox but do not contain

both the transgenes required for reprogramming. These cells

therefore serve as an in situ control. Following the chase period,

we sorted dual transgene-positive (Tg+) and single transgene or

transgene-negative (Tg�) cells of each age by cytometry and

profiled cellular transcriptomes by single-cell RNA-seq (STAR

Methods).

We captured 30,000+ high-quality adipogenic cell mRNA

abundance profiles. After denoising and dimensionality reduc-

tion with a variational autoencoder (Lopez et al., 2018), we clus-

tered cell profiles and found that reprogramming induced a set of

novel gene expression states unseen in control cells (Figures 1C

and 1D). Control cells occupied an adipogenic state marked by

Lpl and a secretory state marked by Rspo1, each predicted to

match in vivo mesenchymal cell states by a cell type classifier

(Figures S2A–S2C). The vast majority of treated cells occupied

reprogramming-specific cell states, suggesting that partial re-

programming effects are highly penetrant. Young and aged cells

occupied distinct regions of the latent space in both control and

reprogrammed populations, similar to a previous study of control

cells in vivo, suggesting that some features of aging persist after

reprogramming (Figures 1D and S3) (The Tabula Muris Con-

sortium, 2020). Animal-to-animal differences were a small

source of variation (< 1%; Figure S4, ANOVA, STAR Methods).

We note that some cells in the transgene-negative (Tg�) sam-

ples co-embed with the reprogrammed populations. This is

most likely the result of imperfect cell sorting prior to single-

cell analysis and may lead us to underestimate the magnitude

of partial reprogramming effects.

We first wanted to determine if the transcriptional distance be-

tween young and aged control cells—the magnitude of aging—

was decreased by partial reprogramming. We measured the

magnitude of aging using the maximum mean discrepancy

(MMD), a statistic from representation learning that measures

the similarity of two populations and provides a test for statistical

significance (Gretton et al., 2012; Kimmel et al., 2020a). Here, we

computed the MMD using autoencoder latent variables to cap-

ture changes across the transcriptome. We compared both

aged control and aged reprogrammed cells with young control

cells by MMD and found that the magnitude of aging decreased

significantly after reprogramming (Figure 1E; p< 0:001,Wilcoxon

rank sum test; STAR Methods). Isochronic comparisons be-

tween animals of the same age were smaller than the magnitude

of aging as expected. We found consistent results using alterna-

tive methods of computing an aging magnitude (Figures S2E–

S2G). This decrease in the distinction of young and aged cells

demonstrates that partial reprogramming can restore youthful

gene expression across the transcriptome.



Figure 1. Partial pluripotent reprogramming restores youthful gene expression in murine adipogenic cells

(A) Schematic of our pluripotent reprogramming lentiviral vector (LTV-Y4TF). Expression of a Yamanaka Factor polycistron is controlled by a tetracycline-

response element (TRE).

(B) Diagram of our partial pluripotent reprogramming experiment. We performed a 3-day pulse/3-day chase of SOKM using Dox inducer in adipogenic cells and

muscle-derived MSCs from young and aged mice. After the chase, cells were profiled by single-cell RNA-seq.

(C) Uniformmanifold approximation and projection (UMAP) projection of single-cell mRNA profiles from young and aged adipogenic cells annotated by cell state.

Adipogenic states are marked by Lpl, secretory states by Rspo1, and reprogramming-specific states by Snca and Nanog.

(D) Densities of control (Tg�) and reprogrammed (Tg+) populations of young and aged cells are displayed in the embedding. Young and aged populations are

readily distinguished.

(E) The magnitude of age-related change was significantly decreased by Y4TF treatment, as measured using MMD (p< 0:001, Wilcoxon rank sum). Isochronic

comparisons between animals of the same age (Y-Y, A-A) serve as a negative control, placing a lower bound on the magnitude.

(F) Partial reprogramming (Aged Tg+) restores youthful gene expression across thousands of genes (significant change in youthful direction, q< 0:10,

Monte Carlo).

(G) Gene set enrichment analysis shows that many gene programs downregulated with age are upregulated by reprogramming and vice versa. Fatty acid

metabolism was one of the youthful programs restored by reprogramming, and inflammatory responses upregulated with age were suppressed by re-

programming (MSigDB Hallmark gene sets).

(H) Fold changes with age for genes in the fatty acid metabolism gene set and the EMT gene sets. Numbers in title indicate the number of genes in each gene set.

Fatty acid metabolism is upregulated by reprogramming, counteracting the aging effect, whereas EMT programs are suppressed, exacerbating the aging effect.
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To determine which genes drive this change, we performed

differential expression analysis and found that reprogramming

induced significant changes toward the youthful expression level

in 3,485 genes of a total of 5,984 genes changed with age (Fig-

ure 1F). Youthful changes occurred significantly more often

than would be expected by random chance (binomial test, p<

0:0001). We also found that reprogramming altered many genes

that are not changed with age, indicating that reprogramming in-

duces some orthogonal effects (Figures S2E and S2H). We used

gene set enrichment analysis (GSEA) (Subramanian et al., 2005)

to compare the effects of aging and reprogramming and found

that reprogramming counter-acted age-related changes in

many gene sets (Figure 1G). Two of the strongest examples

were the adipogenic ‘‘fatty acid metabolism’’ gene set, downre-

gulated with age and upregulated by reprogramming, and the

‘‘inflammatory response’’ gene set, upregulated with age and

downregulated by reprogramming (Figure 1H). We found a

similar downregulation of adipogenic genes with age in single-

cell data collected in vivo (Figure S3) (The Tabula Muris Con-

sortium, 2020). Partial reprogramming also shifted the expres-

sion of some gene sets further in the aged direction. For

example, we found that the ‘‘oxidation phosphorylation’’ and
‘‘mTOR signaling’’ gene sets were elevated by aging and partial

reprogramming, whereas ‘‘epithelial-to-mesenchymal transi-

tion’’ (EMT) was suppressed by both (Figures 1H and S2D).

Therefore, not all gene expression effects of partial reprogram-

ming are counter to the axis of aging.

Cell identity dictates partial reprogramming effects
Wenext wondered if restoration of youthful gene expression was

consistent across cell types and performed partial reprogram-

ming in muscle-derived MSCs (Joe et al., 2010) to investigate.

We captured 20,000+ MSC profiles and found that young and

aged control cells were less distinct than in the adipogenic

case (Figures S5A and S5B), but cell age could still be readily

distinguishedby aclassificationmodel (93%accurate; FigureS6;

STAR Methods). Similar to our experiments in adipogenic cells,

partial reprogramming induced a novel set of reprogramming-

specific gene expression states unseen in control MSCs

(Figure S5C).

Reprogramming states were characterized by a downregula-

tion of the EMT program (Hallmark gene set; Fischer’s exact

test, q< 0:0001). We also found that youthful gene expression

was restored in 712 genes (significant change in youthful
Cell Systems 13, 1–14, July 20, 2022 3
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direction), an aging-induced fibrotic gene program was sup-

pressed, and an aging score derived from bulk RNA-seq data

decreased (Figures S5D, S5E, and S7). We compared the genes

restored with more youthful levels in MSCs and adipogenic cells

and found 261 genes enriched for inflammatory gene sets (e.g.,

‘‘macrophage activation,’’ q< 0:1) were shared across cell types.

However, when we computed themagnitude of aging inMSCs,

we found that aged cells were more distinct from young controls

after reprogramming (Figure S5F). This result was likely due to the

fact thatmore than4000geneswere significantly changedwith re-

programming, but not with age. We hypothesized that the magni-

tude of aging might be smaller in MSCs than adipogenic cells,

such that the orthogonal effects of reprogramming dominate in

MSCs. Consistent with this hypothesis, we found that the magni-

tude of aging was significantly larger in control adipogenic cells

than MSCs in a shared transcriptional space (Figures S8A and

S8C;STARMethods).Weexplored these orthogonal effects using

gene set enrichments and linear discriminant analysis (LDA) and

found that suppression of mesenchymal identity and activation

of cell cycle programs were the dominant effects of reprogram-

ming unrelated to MSC aging (Figures S5G–S5I). These results

suggest that partial reprogramming effects unrelated to aging

may dominate in some cell types.

To confirm that partial reprogramming effects in our data were

consistent with previous reports, we compared data from both

cell types with three previous studies (Samavarchi-Tehrani

et al., 2010; Buganim et al., 2012; Tran et al., 2019). These

studies employed three distinct gene expression analysis tech-

niques (single-cell qPCR, microarrays, and single-cell RNA-

seq) and used different reprogramming strategies, such that

any shared effects are unlikely to be artifactual. We found that

both marker gene dynamics (e.g., EMTmarkers) and reprogram-

ming-specific gene programs extracted from previous studies

show similar dynamics in our data (Figure S9).

To test if reprogramming had cell type-specific effects, we

performed differential expression analysis to identify reprogram-

ming-by-cell type interactions (Methods). This analysis revealed

more than 10,000 genes for which reprogramming induced

significantly different effects (q< 0:05, likelihood-ratio test). We

also found that 11% of nonresidual variation was explained by

cell type-specific effects of reprogramming in a shared transcrip-

tional latent space (Figure S8B, ANOVA).

To unravel the influence of cell type on partial reprogramming

outcomes, we extracted the top genes with significant cell type:

reprogramming interactions and performed gene ontology (GO)

analysis. Extracellular matrix and EMT programs were sup-

pressed by reprogramming in both cell types but significantly

less so in adipogenic cells. By contrast, hypoxia and glycolysis

gene sets were more upregulated by reprogramming in MSCs

than adipogenic cells (Figures S8D–S8F; q< 0:05, Fischer’s

exact test). It is possible that some of these cell type-specific ef-

fects are the result of different induced transgene levels across

cell types. Our data therefore suggest that cell identity dictates

the effects of partial reprogramming across many genes.

Polycomb repressive complex-2 targets are recalcitrant
to reprogramming
We have thus far focused on features of youthful expression that

are restored by partial reprogramming. However, we found that
4 Cell Systems 13, 1–14, July 20, 2022
in both adipogenic cells and MSCs, many aging genes are recal-

citrant to partial reprogramming and retain their aged expression

state (Figure S10A). In MSCs in particular, the majority of aging

genes (1990) were not restored to a youthful level. We found

that 462 of these recalcitrant genes were shared across cell

types, suggesting there may be a core set of aging features

not amenable to partial reprogramming.

To determine if recalcitrant genes shared common regulatory

features, we performed gene set analysis using a database of

DNA binding protein gene sets (ChEA3) (Keenan et al., 2019).

This analysis revealed that both shared and cell type-specific

recalcitrant genes were strongly enriched for targets of polycomb

repressive complex-2 (PRC2; Figure S10B). Many PRC2 target

genes were downregulated with age in both cell types and further

downregulated by partial reprogramming (Figures S10C and

S10D). Suppression of somatic cell identity genes by PRC2 is an

essential step in pluripotent reprogramming (Onder et al., 2012;

Fragola et al., 2013), and PRC2 targets are known to be hyperme-

thylated with age (Teschendorff et al., 2010). These results there-

fore suggest that aging genes important for somatic cell identity

and targeted by PRC2 may be refractory to partial pluripotent

reprogramming.

Somatic cell identity networks are repressed by partial
reprogramming
Based on our observation of novel cell states in reprogrammed

cells, we hypothesized that the gene networks enforcing somatic

cell identity may be repressed, although reprogramming factors

were only expressed transiently. To enable analysis of gene

expression changes across the continuous reprogramming tra-

jectories, we used pseudotime analysis to assign a one-dimen-

sional coordinate to each cell, ordering cells from the most so-

matic to the most reprogrammed. For intuitive interpretation,

we oriented our inferred pseudotime coordinate system so that

baseline cell states occupy lower coordinate values and reprog-

rammed cells occupy higher values (no effect on quantitative

analysis; STAR Methods).

We first investigated the effects of partial reprogramming on in-

dividual marker genes for somatic cell identity across the pseudo-

time trajectories. In adipogenic cells, we found that adipogenic

genes Lpl and Fabp4 were significantly downregulated in the

most distal reprogrammed cells, whereas pluripotency-associ-

ated genesNanog, Snca, and Fgf13were upregulated (Figure 2B;

STAR Methods). We found a similar pattern in MSCs where

mesenchymal genes Acta2, Thy1, and Col1a1 were downregu-

lated, whereas Nanog, Snca, and Fgf13 were upregulated (Fig-

ure 2D). Activation of Nanog and other pluripotency genes after a

2–4 day SOKM induction is consistent with previous single-cell

timecourse studies of iPSC reprogramming (Figure S11) (Schie-

binger et al., 2019).Wenext summarized the activity of cell identity

GRNs using regulatory network inference methods (Aibar et al.,

2017; Han et al., 2018), a cell identity classificationmodel (scNym)

trained on a mouse cell atlas and latent gene programs learned

fromprevious pluripotent reprogramming time series experiments

(Kimmel and Kelley, 2021; Tabula Muris Consortium, 2018). We

found thatsomaticcell identityprogramsweresuppressed indistal

reprogramming states for both cell types using all analysis ap-

proaches (Figures 2E, S9, and S12). We also performed pseudo-

time analysis using two alternative pseudotimemethods (Palantir,



Figure 2. Somatic cell identity is suppressed by partial reprogramming and reacquired by secondary differentiation

(A) Partial reprogramming in adipogenic cells induces a continuous trajectory of reprogramming-specific cell states, captured quantitatively with pseudotime,

projected with UMAP. RNA velocity (arrows) predicted that cells in reprogramming-specific states differentiate toward control cell identities.

(B) Pluripotency associated genes Nanog and Snca were induced in the most distal reprogramming states, whereas adipogenic identity genes Lpl and Fabp4

were suppressed (GAM fit values, mean ± 95% CI).

(C) Muscle-derived MSCs exhibit a similar reprogramming trajectory and directionality in the RNA velocity field, projected with UMAP.

(D) Pluripotency associated genes were also induced in MSCs, whereas mesenchymal identity genes Thy1 and Col1a1 were suppressed.

(E)Mesenchymal identity program activity inferred using cell type classifiers trained on amouse cell atlas dataset scored across pseudotime (left) and projected in

transcriptional latent spaces (right). Mesenchymal identity programs were suppressed in distal reprogramming states for both cell types, whereas the entropy of

cell identity increases (p< 0:01, Wald test).

(F) Gene ontology (GO) enrichments reveal that epithelial-to-mesenchymal transition (EMT), extracellular matrix (ECM), and cell signaling genes were major

drivers of RNA velocity.

(G) Cell state trajectories were simulated based on RNA velocity estimates in each cell type. Simulated cells differentiated toward somatic cell states in both cell

types (left), with a significant decrease in the distance to control states (right; p< 0:01, one sample t test).

(H) Partial reprogramming upregulated pluripotencymarkers and suppressed a somatic identity program in four distinct cell types profiled by RNA-seq in previous

reports (bold text: q< 0:1, likelihood-ratio test) (Francesconi et al., 2019; Lu et al., 2020; Wang et al., 2021; Chen et al., 2021).

(I) RNA-seq profiles of pluripotent and somatic cell types from the ARCHS4 compendium embedded with scNym (UMAP, left). Somatic identity scores derived

from the scNym model were suppressed by reprogramming and pluripotency scores were upregulated (right; scores scaled ½0; 1� by experiment; p< 0:01, Wald

test; boxes are 25th to 75th quartile).

(J) Transcriptional space integrating partially reprogrammed adipogenic cells from (A) with three independent experiments extending the chase period from 3 to

10 days (left). Extended chase periods show that adipogenic cells revert to their original somatic identities based on pseudotime coordinates (center; all p< 0:01,

Wilcoxon rank sum test, 3 day Tg+ versus 10 day Tg+; boxes are 25th to 75th quartile), upregulation of somatic genes, and downregulation of pluripotency

genes (right).
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scVelo latent time) and found that our results were robust across

algorithms (Figure S13) (Setty et al., 2019; Bergen et al., 2020).

Our results stand in contrast to previous reports that partial re-

programming did not suppress somatic cell identity or activate

pluripotency genes (Sarkar et al., 2020; Lu et al., 2020; Olova

et al., 2019). What could explain this difference? To make a

more direct comparison, we interrogated gene sets from these
reports in our data, re-analyzed raw RNA-seq data from con-

trasting studies where available (Lu et al., 2020), and re-analyzed

three additional public partial reprogramming RNA-seq datasets

in three unique cell types (Francesconi et al., 2019; Chen et al.,

2021; Wang et al., 2021). Three of the public datasets are from

in vivo partial reprogramming experiments, helping generalize

our conclusions beyond the in vitro setting explored in this study.
Cell Systems 13, 1–14, July 20, 2022 5
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Using gene sets from previous reports, we confirmed that most

pluripotency geneswere upregulated and somatic identity genes

were downregulated in our data (Figure S14). We also found that

our cell identity classifiers learn to use somatic marker genes not

included in previous gene sets, providing a more complete rep-

resentation of cell identity (Figure S14D).

Across four cell types available in public data (B cells, cardio-

myocytes, skeletal muscle, and retinal neurons), we found that

pluripotency genes were upregulated and somatic identity

gene programs were downregulated in each case (Figure 2H;

q< 0:1, likelihood-ratio test). We likewise found that scNym iden-

tity classifiers leveraging the ARCHS4 RNA-seq compendium as

training data (Lachmann et al., 2018) detected significant upre-

gulation of ESC-like pluripotency programs and suppression of

somatic identity programs in the three in vivo partial reprogram-

ming experiments (Figure 2I; p< 0:01, Wald test). We found that

pluripotency genes were upregulated and somatic identities

were suppressed in RNA-seq data from one contradictory report

using SOK in vivo (Lu et al., 2020).

We note that it is possible the biology of dermal fibroblasts

used in some previous studies (Ocampo et al., 2016; Lu et al.,

2020; Sarkar et al., 2020) may be uniquely resistant to identity

suppression, therefore explaining our contrasting results. How-

ever, this seems unlikely, as our single-cell measurements are

consistent with lineage-tracing studies in fibroblasts showing

that partial reprogramming induces pluripotency programs

(Maza et al., 2015), and our re-analysis of public data is consis-

tent across diverse cell identities. Our results therefore suggest

that partial reprogramming represses somatic cell identity

GRNs and activates late-stage pluripotency GRNs in a subpop-

ulation of cells across diverse cell types in vitro and in vivo,

potentially posing a neoplastic risk.

Partially reprogrammed cells re-acquire somatic
identities through secondary differentiation
It has been proposed that transient expression of reprogram-

ming factors induces a transient de-differentiation and rediffer-

entiation process, such that reprogrammed cells temporarily

adopt early phase reprogramming features but then re-acquire

their original state (Samavarchi-Tehrani et al., 2010; Nagy and

Nagy, 2010; Sarkar et al., 2020). To date, there has been little ev-

idence for this model in the context of restoring youthful gene

expression. In addition to rich profiles of the current cell state,

single-cell RNA-seq provides information on future gene expres-

sion states through RNA velocity (La Manno et al., 2018).

We inferred RNA velocity for both our adipogenic cell andMSC

experiments and found that cells in reprogrammed states were

moving toward baseline states based on velocity maps (arrows

point from high pseudotime values toward low pseudotime

values). This result suggests that in both cell types, reprog-

rammed cells were re-differentiating toward their baseline state

(Figures 2A and 2C) (Bergen et al., 2020). To identify genes

that drive predicted changes in cell state, we performed differen-

tial velocity analysis. We found that EMT and extracellular matrix

gene sets were enriched in the velocity markers for reprog-

rammed cells, suggesting that partially reprogrammed cells re-

acquire their original mesenchymal identities (Figure 2F).

We further quantified RNA velocity maps using phase simula-

tions, a technique from dynamical systems to measure proper-
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ties of vector fields by simulating the motion of a point moving

through the field (Kimmel et al., 2020b, 2020a; Strogatz, 2015).

Here, we simulated reprogrammed cells in each velocity map

and evolved their positions based on the inferred velocities of

neighboring cells (Methods). We found that simulated reprog-

rammed cells evolved toward somatic cell states in both cell

types (Figure 2G).

From these analyses, we hypothesized that partially reprog-

rammed cells would re-acquire their full somatic identity if re-

programming factors were withdrawn for a longer period. To

test this hypothesis, we repeated our partial reprogramming

experiment in adipogenic cells and extended the period between

reprogramming factor withdrawal and profiling (the chase

period) from 3 to 10 days. We integrated the results of three in-

dependent 10 day chase experiments with our original 3 day

chase experiment, allowing us to ask where the 10 day chase

cells are located in the original reprogramming pseudotime tra-

jectory (Figure 2J; STAR Methods).

We found that reprogrammed cells had pseudotime coordi-

nates significantly closer to control cells after the 10 day chase

period, suggesting that cellsmove ‘‘backward’’ in pseudotime af-

terreprogrammingfactorsarewithdrawn(Figure2J). Investigating

marker genes, we found that pluripotency marker genes had

significantly lowerexpressionafter10days thanat3days,andso-

matic identity genes had significantly higher expression. Further

analysis of differentially expressed reprogramming genes and

gene set enrichments revealed that most reprogramming effects

were attenuated after the 10 day chase period (Figures 2J and

S15D–S15F). To test the possibility that somatic cell identity was

restored by selective cell death and expansion, rather than by

state transitions, we performed a timecourse partial reprogram-

ming experiment in a cell line model and found that observed cell

death and proliferation rates were incompatible with a selection-

expansionmechanism (FigureS16; STARMethods). Collectively,

our results suggest that partial reprogramming involves the tran-

sientsuppressionofsomatic identityGRNsandsubsequent redif-

ferentiation and reactivation of these networks.

We next wondered if youthful gene expression persisted in

aged cells after the 10 day chase period. We found that hundreds

of significantly rejuvenated genes from the 3 day chase experi-

ment were still rejuvenated after 10 days, with a strong correlation

between the 3 day and 10 day fold-changes (Figures S15G and

S15H; Pearson’s r = 0:67; p< 0:001). We were particularly

curious if the rejuvenation of adipogenic gene expression we

observed at 3 days likewise persisted at 10 days. To investigate,

we analyzed the distribution of cell states in the 10d chase exper-

iments and found that reprogramming induced a significant shift

from a fibrotic state toward an adipogenic state relative to control

cells (Figures S15I and S15J; p< 0:001;c2 test). We also found

that the GO ‘‘fatty acid metabolism’’ program was still elevated

in reprogrammed cells after 10 days (Figure S15K). Our results

indicate that some but not all features of youthful gene expression

induced by partial reprogramming persist after longer-term with-

drawal of reprogramming factors.

Subsets of the Yamanaka Factors are sufficient to elicit
partial reprogramming effects
Partial reprogramming studies in aged cells have largely investi-

gated the effects of the canonical Yamanaka Factors (SOKM)
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along with additional pluripotency regulators known to induce

pluripotency (Nanog, Lin28) (Sarkar et al., 2020; Yu et al.,

2007). The pluripotency programs activated by the Yamanaka

Factors contain positive feedback; hence, it is possible that a

subset of factors is sufficient to restore youthful expression, as

suggested by a recent report using only SOK (Lu et al., 2020).

Several efforts have also demonstrated the sufficiency of Yama-

naka Factor subsets to generate iPSCs (Wernig et al., 2008; Na-

kagawa et al., 2008; Utikal et al., 2009; Velychko et al., 2019), but

it remains unknown if subsets exert similar transcriptional effects

after only a short, transient induction. Both the full SOKM and

reduced SOK factor combinations are oncogenic, motivating a

search for alternative reprogramming strategies to restore youth-

ful gene expression (Abad et al., 2013; Senı́s et al., 2018).

Here, we investigated the effects of all possible sets of the Ya-

manaka Factors using a custom pooled screening system (Fig-

ure 3A). Our system is inspired by other pooled screening and line-

age tracing systems (Dixit et al., 2016; Hill et al., 2018; Norman

et al., 2019; Guo et al., 2019a) and encodes a tetracycline-induc-

ible reprogramming factor along with a constitutively expressed

barcode on lentivirus. We introduced these vectors in two inde-

pendent experiments into young and aged MSCs and performed

a 3-day pulse/3-day chase. The expressed lentiviral barcodes al-

lowed us to demultiplex the unique combination of lentiviruses in-

fecting each cell in silico (Figures 3A and 3B; STARMethods). We

confirmed the accuracy of demultiplexing by comparing with an

orthogonal demultiplexing approach (FigureS17; STARMethods).

We recovered more than 100 transduced cells for all combina-

tions of the Yamanaka Factors (Figures 3B and 3C). To confirm the

efficacy of our pooled screening system, we investigated the ef-

fects of each combination on reprogramming marker genes. We

found that mesenchymal marker genes decreased as a function

of combinatorial complexity (number of unique factors), whereas

reprogramming marker genes increased (Figure 3D). This result

is consistent with previous gene-interaction studies of differentia-

tion factors (Norman et al., 2019) and the known biology of the Ya-

manaka Factors, where higher order combinations are more

effective at reprogramming (Takahashi and Yamanaka, 2006).

To confirm that our pooled reprogramming method induced

effects similar to our polycistronic vector (Figure 1A), we per-

formed data integration for our MSC polycistronic and pooled

screening experiments. Higher order combinations clustered

more readily with polycistronic-SOKM reprogrammed cells

(Figures S18A–S18E).We also found that reprogrammingmarker

genes from the polycistronic experiment had highly correlated

fold-changes in the pooled experiment (r > 0:63; p< 0:001;

Figures S18F and S18I). We did observe that polycistronic re-

programming more strongly suppressed the EMT program,

possibly due to differences in transcription factor stoichiometry

between the pooled and polycistronic approach as previously

reported (Carey et al., 2009, 2011) (Figures S18G and S18H).

We next wanted to determine if different Yamanaka Factor

combinations elicit unique effects or if each combination

induced similar gene expression programs, varying more in

magnitude than in direction. We investigated this question by

training a cell classification model to discriminate cells perturbed

with each combination of Yamanaka Factors (Methods) (Kimmel

and Kelley, 2021). Combinations with similar effects might be

frequently confused by the model, whereas combinations with
unique effects might be readily discriminated. To analyze our

trained classifier, we extracted prediction probabilities across

combinations for each cell and then computed the correlation

of these probabilities for each pair of combinations as a similarity

metric. We found that combinations of similar combinatorial

complexity were highly similar, whereas combinations of

different complexities were readily distinguished. For instance,

most triplet combinations were frequently confused with the

full Yamanaka Factor set (Figure 3E). We also compared differ-

entially expressed genes for each combination using the Jac-

card index and mean expression vectors using the cosine simi-

larity, yielding similar results (Figures S19A and S19B).

Most combinations of Yamanaka Factors with similar

complexity therefore have similar transcriptional effects when

induced for a short period of time in MSCs. The similarity among

higher order combinationsmay be due to the activation of shared

effectors within the pluripotency network, consistent with previ-

ous reports (Wernig et al., 2008; Nakagawa et al., 2008; Utikal

et al., 2009; Velychko et al., 2019). It is also plausible that the

endogenous copy of the missing factor is activated by the re-

maining factor, as the Yamanaka Factors can activate one

another (Han et al., 2018) (Figure S19C). We did not observe sig-

nificant upregulation of missing factors in our data (q> 0:1,

Monte Carlo differential expression), but we cannot rule out the

possibility of transient activation. Taken together, our results

suggest that no single Yamanaka Factor is required for restora-

tion of youthful gene expression.

Yamanaka Factor subsets decouple rejuvenation and
cell identity suppression
We wondered if suppression of cell identity and restoration of

youthful gene expression were strongly associated across factor

combinations, such that stronger restoration of youthful gene

expression was predictive of a more suppressed identity pro-

gram. To investigate, we scored amesenchymal cell identity pro-

gram using a cell identity classifier and the activity of an aging

gene set extracted from our MSC experiments across cells in

our screening experiment (Kimmel and Kelley, 2021; STAR

Methods). We found that all combinations of Yamanaka Factors

suppressed the cell identity program and reduced the aging

score (Figure 3). Aging score reduction was significant (Wald

tests, p< 0:05) for all but two programs with lower cell numbers

where our analysis may be underpowered (SOK, OKM). We like-

wise found that 791 aging genes shifted toward a youthful level in

at least one reprogramming condition (Figure 3G). Gene set

enrichment analysis confirmed that coherent biological pro-

cesses were restored to a youthful level, including p53 signaling

and G2M checkpoint activity, whereas other programs sup-

pressed with age were further suppressed by reprogramming

(EMT, IFN signaling; Figure 3H).

However, suppression of the mesenchymal identity score and

reduction in the aging score were not meaningfully correlated

(Spearman r = � 0:28; p> 0:31). This result was replicated

when we considered each of the two independent experimental

batches from our screen separately (Spearman r< 0 for both).

Some combinations reduced the aging score to roughly the

same degree as the full Yamanaka Factor set, although suppress-

ing mesenchymal identity significantly less (Wald test, p< 0:05).

As two examples, the oncogene-free combination SO had a
Cell Systems 13, 1–14, July 20, 2022 7



Figure 3. Pooled screening reveals the sufficiency of Yamanaka Factor subsets and decoupling between rejuvenation and identity sup-

pression

(A) Diagram of Yamanaka Factor pooled screening experiments. Young and aged MSCs were transduced with lentiviruses each harboring one inducible Ya-

manaka Factor with expressed barcodes (lower). Reprogramming was induced for a 3-day pulse/3-day chase (n = 5 animals per age across two independent

experiments). Cells were profiled by single-cell RNA-seq and unique combinations of Yamanaka Factors were demultiplexed in silico based on expressed

barcodes.

(B) Cells from the pooled screen embedded using scNym, projected with UMAP, and labeled with the detected reprogramming factors (10,000+ cells).

(C) Density of cells perturbed with different numbers of reprogramming factors in the UMAP embedding. Higher order combinations show a larger transcriptional

shift relative to control cells.

(D) MSCmarker genes (top) decrease and reprogramming marker genes (center) increase as the combinatorial complexity (number of unique factors) increases.

Aging genes (lower) appear closer to the youthful level with more complex perturbations.

(E) Similarity matrix between different Yamanaka Factor combinations extracted from a cell perturbation classification model. Similarity was computed as the

correlation in prediction probabilities across cells. Low complexity perturbations and control (NT, not treated) cells form a similarity group and 3- and 4-factor

combinations form another.

(F) Mesenchymal cell identity scores derived from scNymmodels and aging gene set scores in aged cells reprogrammedwith different factor combinations (mean

scores and 95% CI). All but two Yamanaka Factor combinations significantly decreased both the mesenchymal identity and age scores relative to aged control

cells (NT) (Wald tests, p< 0:01). However, age and identity scores were not well correlated, suggesting that identity suppression and rejuvenation are not tightly

coupled (Spearman r = � 0:35;p> 0:20).

(G) Aging gene expression across each combination of Yamanaka Factors.

(H) Gene set enrichment analysis scores comparing the effect of aging and reprogramming with a 2- or 3-factor combination on each gene set.

(I) Comparison of a pro-youthful combination with lower identity suppression (OM) and a combination with higher identity suppression (SOK). The OM combi-

nation shows larger increases in pro-youthful gene expression across many genes (upper), and a lower unfolded protein response (UPR) and MYC program

activity (lower) by gene set enrichment analysis (GSEA).
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Figure 4. Partial Msx1 reprogramming increases myogenic gene

expression in aged myogenic cells

(A) Schematic of partial multipotent reprogramming experiments with aged

myogenic cells isolated from (n = 2; 3 animals/experiment).

(B) Integrated cell profiles from two independent experiments (labels, lower

right) projected with UMAP. Pseudotime analysis (left) provides a quantitative

measure of myogenic differentiation state for each cell, confirmed by marker

gene analysis (top right).

(C) Transient multipotent reprogramming shifted cells into a significantly more

differentiated state in both experiments (Wilcoxon rank sums, p< 0:05).

Similarly, transient reprogramming significantly reduced a transcriptional ag-

ing signature extracted from a previous study (Kimmel et al., 2020a) (mean ±

SEM; t test, p< 0:01, normalized within experiments).

(D) Myogenic marker genes for sarcomere components were enriched by

transient multipotent reprogramming in both experiments (normalized within

experiments, q< 0:1, Monte Carlo).
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similar reduction in the aging score to SOKM but suppressed

mesenchymal cell identity 54% less than the full set. Similarly,

we compared a pro-youthful outlier combination (OM) and a highly

suppressive combination (SOK) and found that OM had stronger

pro-youthful changes acrossmore than 100 genes. The combina-

tions also significantly differed across multiple gene sets,

including higher unfolded protein response activity in SOK and

lower interferon signaling inOM (Figure 3I). We repeated these ex-

periments at a smaller scale in adipogenic cells and found similar

qualitative results (Figure S20). Our results suggest that suppres-

sion of cell identity and restoration of youthful gene expression are

not tightly coupled, but none of the reprogramming combinations

we tested here entirely disentangle the two phenotypes. Future

workmay therefore attempt to reduce the suppression of somatic

identity while retaining pro-youthful benefits.

Partial multipotent reprogramming improves
myogenesis in aged cells
Our results with the Yamanaka Factors suggest that alternative

reprogramming strategies might also restore youthful expres-
sion. We wondered if partial reprogramming with multipotent re-

programming factors could also be effective. To test this hypoth-

esis, we turned to a multipotent reprogramming system (as

opposed to a pluripotent system) in myogenic cells inspired by

limb regeneration in urodele amphibians using the transcription

factor Msx1. Msx1/2 are known to dedifferentiate myocytes to

a multipotent state and have documented roles in digit and

limb regeneration (Odelberg et al., 2000; Yilmaz et al., 2015; Ta-

ghiyar et al., 2017). We performed a 3-day pulse/3–4-day chase

of Msx1 expression using a doxycycline-inducible lentiviral sys-

tem in aged myogenic cells in vitro, then profiled cells by single-

cell RNA-seq in two independent experiments (Figure 4A). As in

our pluripotent reprogramming experiments, we sorted trans-

gene positive and negative cells based on reporter expression

to capture control and reprogrammed mRNA profiles (Figure 4B;

STAR Methods).

We captured myogenic cells in both progenitor (Pax7+) and

differentiating states (Myog+). This is expected because our

in vitro culture system provides a differentiation stimulus (Gilbert

et al., 2010) (Figure 4B). It has previously been reported that aged

myogenic cells do not differentiate into mature myocytes as

effectively as young cells (Ulintz et al., 2020; Kimmel et al.,

2020a). We found that partially reprogrammed aged cells were

more differentiated than aged control cells based on pseudo-

temporal distributions, expression of marker genes, and gene

set analysis (Figures 4C, 4D, and S21D). This result was robust

to independent analysis of each experiment (Figures S21A–

S21C). We also measured an aging transcriptional signature

derived from a previous study of myogenic differentiation and

found that partial reprogramming significantly reduced the aging

score (Figure 4C; STAR Methods, p< 0:01, t test) (Kimmel et al.,

2020a). The myogenic aging score itself is strongly influenced

by the differentiation program, such that pseudotime explains

a significant amount of variation in the aging score

(r2 = 0:58;p< 0:0001Wald test). These results suggest that mul-

tipotent reprogramming with Msx1 can partially restore youthful

gene expression inmyogenic cells, similar to the Yamanaka Fac-

tors in adipogenic cells.

DISCUSSION

Aging induces broad gene expression changes across diverse

mammalian cell types, and these changes have been linked to

many of the prominent hallmarks of aging (Kimmel et al., 2019;

The Tabula Muris Consortium, 2020; López-Otı́n et al., 2013).

Cell reprogramming experiments have shown that young ani-

mals can develop from adult cells and aging features can be

erased through complete reprogramming to pluripotency (Gur-

don, 1962; Takahashi and Yamanaka, 2006; Lapasset et al.,

2011). Recent reports have further suggested that transient

expression of the Yamanaka Factors is sufficient to reverse fea-

tures of aging and improve cell function (Ocampo et al., 2016;

Sarkar et al., 2020; Lu et al., 2020; Gill et al., 2021). However, it

was unclear whether these partial reprogramming interventions

suppress somatic cell identities, if all of the Yamanaka Factors

are required, or whether alternative reprogramming strategies

could restore youthful gene expression.

Here, we investigated these questions using single-cell mea-

surements of gene expression to capture the phenotypic
Cell Systems 13, 1–14, July 20, 2022 9
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trajectory of partial reprogramming and evaluate the impact of

alternative reprogramming methods. Partial reprogramming

restored youthful expression in many aging genes, but the de-

gree of restoration was cell identity dependent, and some gene

programs (e.g., PRC2 targets) appear resistant to restoration

(Figures 1, S5, and S10). We also found that a subset of youthful

expression features persist even after longer-term withdrawal of

reprogramming factors (Figure S15), adding nuance to previous

reports that the pro-youthful effects of partial reprogramming

were reversed on short timescales (Ocampo et al., 2016). We

cannot determine from our data which of these expression

changes may confer youthful function or potentially have other,

undesired effects. Decomposing the relevant effectors from

other effects of reprogramming remains an important area for

future research.

We also found that partial reprogramming suppressed so-

matic cell identities and upregulated hallmark pluripotency pro-

grams in diverse cell types both in vitro and in vivo (Figure 2),

contrary to some previous reports (Ocampo et al., 2016; Sarkar

et al., 2020; Lu et al., 2020) but consistent with timecourse iPSC

reprogramming experiments (Figure S11) and lineage-tracing

studies of transient SOKM expression (Maza et al., 2015). We

predicted based on RNA velocity and dynamical systems anal-

ysis (La Manno et al., 2018; Bergen et al., 2020; Strogatz,

2015) that this suppression of somatic identity would be tran-

sient, and we observed that somatic identity is indeed restored

after longer-term withdrawal of reprogramming factors (Fig-

ure S15). We further found that somatic identities are most likely

regained through state transitions, rather than cell selection ef-

fects, using cell line and mathematical models (Figure S16,

Note S1). Our experiments and analyses therefore support a

model in which partial reprogramming transiently suppresses

diverse somatic identity programs that are later reacquired

through differentiation. Future lineage-tracing experiments that

indelibly mark partially reprogrammed cell states will provide

further supporting evidence for this model.

Restoring youthful gene expression can improve tissue func-

tion, implying that partial reprogramming may be therapeutic.

However, pluripotent reprogramming is well-known to be an

pro-neoplastic process (Abad et al., 2013; Mosteiro et al., 2016;

Chen et al., 2021), even when Myc is excluded from the reprog-

ramming set (Senı́s et al., 2018). Neoplastic doses of reprogram-

ming factors in in vivo studies are often very close to doses that

confer youthful benefit. For example, two in vivo partial reprog-

ramming studies found that increasing the therapeutic induction

time or SOKM copy number only two-fold led to 100% mortality

(Ocampo et al., 2016; Chen et al., 2021). Given this context, our

results demonstrating somatic identity suppression across

diverse cell types raise the hypothesis that evenpartial reprogram-

ming with SOKMmay promote neoplasia. We propose that these

neoplastic risks may be masked in previous in vivo studies due to

the low rate of such risks, small sample sizes employed, short

timescales of the studies, and specific features of gene induction

systems used (e.g., local delivery of reprogramming factors).

Prior to this work, it was unknownwhich of the Yamanaka Fac-

tors were required to restore youthful gene expression or which

subsets might exhibit distinct effects during partial reprogram-

ming. Previous studies have explored only one set of factors at

a time, preventing accurate comparisons to address these ques-
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tions (Ocampo et al., 2016; Sarkar et al., 2020; Lu et al., 2020; Gill

et al., 2021). Our pooled screens of all possible Yamanaka Factor

subsets revealed that combinations of 3–4 Yamanaka Factors

have remarkably similar effects, suggesting that no single factor

is required to restore youthful gene expression. Combinations of

two Yamanaka Factors were also more similar to the full SOKM

set than to control or single factor perturbations, and nearly all

reprogramming factor combinations reduced an aging gene

expression score (Figure 3). Our screen demonstrates that no

single pluripotency factor is required to mask features of aging

and suggest that oncogene-free reprogramming strategies

may also restore youthful gene expression. These results are

consistent with previous reports that subsets of the Yamanaka

Factors are in fact sufficient to induce pluripotency (Wernig

et al., 2008; Nakagawa et al., 2008; Utikal et al., 2009; Velychko

et al., 2019). Similarly, recent work suggests that other pluripo-

tency factors can restore youthful cell function (Shahini et al.,

2021). Our multipotent reprogramming experiments in myogenic

cells further support this hypothesis, indicating that youthful

gene expression may be restored even without activating the

pluripotency factors (Figure 4).

Given the proposed therapeutic applications of SOKM reprog-

ramming, we believe even a modest risk of neoplasia (e.g., 0:1%

of animals) as suggested by our data and previous reports is high-

ly undesirable. Identifying alternative reprogramming strategies to

restore youthful gene expression with lower neoplastic risk is

therefore a worthwhile goal. Toward this aim, we have shown

that partial reprogrammingwithmultiple subsets of the Yamanaka

Factors induces highly similar transcriptional effects to the full set

and that a distinct multipotent reprogramming system can confer

youthful expression. These results suggest the feasibility of disen-

tangling the rejuvenative and pluripotency inducing effects of par-

tial reprogramming in future work and serve as a resource for

further interrogation of partial reprogramming effects in agedcells.

We have not directly measured whether partial reprogram-

ming can improve physiological cell functions. Future work is

required to determine if the restoration of youthful expression

we observe is sufficient to improve cell and tissue function in

the cell types we interrogated. We likewise have not directly

measured the neoplastic risks that may be posed by partial re-

programming in vivo. In future work, in vivo partial reprogram-

ming or transplant experiments with large numbers of animals

are required to quantify these risks (e.g., 162 animals are

required to detect a 1% risk of neoplasia). For our comparisons

of partial SOKM reprogramming effects across cell types, we do

not have the ability to finely tune transgene levels in our experi-

mental system. Some differences between cell types may there-

fore be due to differences in the level of transgene activation

achieved in each cell population.
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Antibodies

PE-Cy7 anti-CD45 Biolegend Cat # 103113; RRID:AB_312978

APC anti-ITGA7 Thermo Fischer Cat # MA5-23555; RRID:AB_2607368

BV605 anti-CD140a Biolegend Cat. # 135916; RRID:AB_2721548

PE-Cy7 anti-CD31 Biolegend Cat # 102417; RRID:AB_830756

Chemicals, peptides, and recombinant proteins

Recombinant FGF2 R&D Systems Cat#: 233-FB-025

Critical commercial assays

Chromium Single Cell Gene Expression

v3 Kit

10X Genomics Cat. # PN-1000092

Chromium Single Cell Gene Expression

v3.1 Kit

10X Genomics Cat. # PN-1000121

Deposited data

Raw and analyzed single cell

genomics data

This paper GEO: GSE176206

Raw and analyzed bulk RNA-seq data for

C2-iYF experiments

This paper GEO: GSE197437

iPSC reprogramming timecourse Schiebinger et al., 2019, Cell. GEO : GSE122662

Tabula Muris Senis single cell atlas The Tabula Muris Consortium, 2020,

Nature.

GEO : GSE149590

B cell reprogramming single cell timecourse Francesconi et al., 2019, eLife. GSE: GSE112004

RNA-seq of partial reprogramming in retinal

neurons

Lu et al., 2020, Nature. NCBI SRA: PRJNA655981

RNA-seq of partial reprogramming in the

murine heart

Chen et al., 2021, Science. NCBI SRA: PRJNA674836

RNA-seq of partial reprogramming in

skeletal muscle

Wang et al., 2021, Nature Communications. NCBI GEO: GSE148911

Experimental models: Cell lines

C2C12 ATCC Cat # CRL-1772

HEK293T ATCC Cat # CRL-3216

Experimental models: Organisms/strains

C57Bl/6J mice Jackson Laboratories Cat#: 000664

Oligonucleotides

MULTI-seq primers McGinnis et al., 2019 N/A

Recombinant DNA

Polycistronic OKMS lentiviral vector

(LTV-Y4TF)

VectorBuilder Cat # VB200527-1007ecw

Tet3G lentiviral vector (eGFP, LTV-

Tet3G-eGFP)

VectorBuilder Cat # VB900088-2774nkq

Tet3G lentiviral vector (mCherry, LTV-

Tet3G-mCherry)

VectorBuilder Cat # VB900088-2776tfj

Tet3G lentiviral vector (Hygro; LTV-

Tet3G-Hygro)

VectorBuilder Cat # VB180123- 1018bxq

Monocistronic Sox2 lentiviral vector (LTV-

S-BC)

This study N/A

Monocistronic Pou5f1 lentiviral vector (LTV-

O-BC)

This study N/A
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Monocistronic Klf4 lentiviral vector (LTV-

K-BC)

This study N/A

Monocistronic Myc lentiviral vector (LTV-

M-BC)

This study N/A

Software and algorithms

scNym Github https://github.com/calico/scnym

scMMD Github https://github.com/calico/scmmd

Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/

Bustools Melsted et al., 2019 https://bustools.github.io/

Scanpy Wolf et al., 2018 https://github.com/theislab/scanpy

Scvelo Bergen et al., 2020 https://github.com/theislab/scvelo
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources, data, and software should be directed to and will be fulfilled by the lead contact,

Jacob C. Kimmel (jacob@jck.bio).

Materials availability
Plasmids generated in this study are available by request.

Data and code availability
Our data have been submitted to the NCBI Gene Expression Omnibus under accession numbers GEO: GSE176206 andGSE197437.

Our data have also beenmade available at https://reprog.research.calicolabs.com/. No original code is reported with this paper. Any

additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
We isolated primary cells from the subcutaneous adipose tissue (inguinal pad) and limbmuscles of young (2-4 months old) and aged

(20-30 months old) C57Bl/6 male mice. Mice were ordered from the Jackson labs and aged at Calico Life Sciences, LLC. Young an-

imals were allowed to acclimate for at least 3 weeks prior to experimentation. All animal experiments were approved by the Calico

Institutional Animal Care and Use Committee, an AAALAC-accredited body.

We isolated cells from two animals of each age for adipogenic SOKM reprogramming experiments (aged animals, 28 months old)

and three animals of each age for mesenchymal stem cell SOKMexperiments (aged animals, 23months old). We isolatedMSCs from

three animals of each age for one independent MSC pooled screening experiment, and from two animals of each age in a second

independent experiment (aged animals, 28 months old). We isolated adipogenic cells from two animals of each age for one adipo-

genic pooled screening experiment (aged animals, 28months old), and from three animals of each age in a second experiment (aged

animals, 30 months old). For myogenic cell experiments, we isolated cells from two aged animals (28 months old) for the first exper-

iment and three aged animals (30 months old) for the second experiment.

Cell culture
Adipogenic cells were passaged prior to experiments. Cells were dissociated with TrypLE reagent (Gibco) and seeded at 100,000

cells/well in a 6 well plate, using separate wells for each animal and transduced with lentivrus after overnight incubation. Muscle-

derived MSCs were passaged once prior to transduction using TrypLE. MSCs were seeded at 50,000 cells/well in a 6 well plate

for polycistronic reprogramming experiments and 25,000 cells/well for pooled screening experiments. For arrayed screening exper-

iments, MSCs were seeded at 7,500 cells/well in a 24 well plate, one plate per animal. For pooled screening in adipogenic cells, cells

were seeded at 100,000 cells/well in 6 well plates. Myogenic cells were expanded for 5-7 days prior to lentiviral transduction in

myogenic growth media and were passaged for seeding at 100,000 cells/well in 6 well plates for transduction. Myogenic cells

were passaged with Cell Dissociation Buffer (Gibco). We cultured C2C12 murine myoblasts in C2-growth media (DMEM, 20%

FBS, 1% Pen/Strp; Gibco) for expansion and switched to C2-plating media (DMEM, 10% FBS, 1% Pen/Strep) for reprogramming

experiments.
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METHOD DETAILS

Cell isolation
We isolated adipogenic cells from subcutaneous adipose tissue by dissecting tissue into small (1-2 mm) pieces with scissors and

performing a 0.1% (w/v) collagenase II (Gibco) digestion in DMEM at 37oC for 1 hour. Adipogenic cell suspensions were washed

with complete media (10% FBS, DMEM) and incubated in a 6-well plate overnight with one well per animal of origin.

We isolated mesenchymal stem cells from limb muscle tissue by dissecting muscle into small pieces with scissors and performing

two enzymatic digestions. We first digested in 0.2% (w/v) collagenase II in DMEM for 90 minutes, then washed cell suspensions in

digestion wash buffer (F10, 10% horse serum) and performed a second incubation in 0.4% (w/v) dispase II (Gibco) for one hour. Di-

gested muscle cell suspensions were filtered through a 70 mm cell strainer, then a 40 mm cell strainer and stained with fluorophore-

conjugated antibodies. We sorted mesenchymal stem cells as CD31�, CD45�, PI�, Sca1+ by FACS. MSCs were plated in one well

each of a 6-well plate for each animal and incubated for 24 hours.

We isolated myogenic cells by performing the same digestion described for MSCs on limbmuscle tissue. Once single cell suspen-

sionswere obtained, weperformed a pre-plating procedure by incubating cells in a sarcoma-derived ECMcoatedwell plate for 10mi-

nutes, then immediately transferring cell suspensions to new ECM coated wells. This pre-plating step captures the majority of

adherent, non-myogenic cells in the suspension and allows for capture of a high purity myogenic cell population in the final wells.

Cells were incubated overnight in myogenic growth media (F10, 20% FBS, 1% Pen/Strep; Gibco, supplemented with 5 ng/mL

rFGF2; R&D Systems).

Lentiviral cloning and production
For polycistronic reprogramming experiments, we synthesized murine cDNAs for Pou5f1, Klf4, Myc, and Sox2. We removed stop

codons from all cDNAs exceptSox2 and concatenated cDNAs into a polycistron using 2A-peptide sequences for a final open reading

frame O-P2A-K-T2A-M-E2A-S. We inserted this OKMS polycistron into a 3rd generation lentiviral transfer vector flanked by a 5’

TRE3G tetracycline-inducible promoter and a 3’ woodchuck promoter response element. We also included a cytomeglovirus

(CMV) promoter driven mCherry reporter transcript 3’ from the WPRE prior to the 5’ lentiviral terminal repeat (LTR). We refer to

this vector as LTV-Y4TF.

For pooled screening experiments, we synthesized cDNAs for the Yamanaka Factors followed by an EF-1 alpha short (EFS) pro-

moter driven eGFP with a unique 8-mer barcode in the 3’ UTR, followed by an internal SV40 polyA signal within the lentiviral genome.

We cloned each Yamanaka Factor transgene into lentiviral transfer vectors with a 5’ TRE3G promoter to drive expression of the Ya-

manaka Factor. These designs were inspired by the CellTag lineage-tracing system (Guo et al., 2019a) and allow us to detect the

complement of Yamanaka Factors that transduced a given cell based on recovery of unique barcodes, even though the Yamanaka

Factor transgenes are only transiently expressed. We refer to these vectors as LTV-S-BC, LTV-O-BC, LTV-K-BC, and LTV-M-BC

where BC indicates a 3’ expressed barcode.

For multipotent reprogramming experiments in myogenic cells, we cloned the Msx1 cDNA with a separable mCherry tag Msx1-

T2A-mCherry into TRE3G driven lentiviral vector with a 3’ CMV driven eGFP reporter. We refer to this vector as LTV-Msx1.

We used four different tetracycline-transactivator lentiviral vectors, all harboring the same Tet3G tetracycline transactivator allele

flanked by different reporters to allow compatibility with different reprogramming vectors. For polycistronic reprogramming inmuscle

MSCs, we used a CMV driven Tet3G-T2A-mCerulean vector (LTV-Tet3G-mCerulean; adapted from VectorBuilder cat. VB180123-

1018bxq by Gibson assembly). For polycistronic reprogramming in adipogenic cells, we used a vector harboring an EF1a driven

Tet3G ORF followed by a CMV driven eGFP-T2A-PuromycinR reporter (LTV-Tet3G-eGFP; VectorBuilder cat. VB900088-

2774nkq). For pooled screening, we used a vector harboring a CMV driven Tet3G followed by a 3’ WPRE and CMV driven mCherry

reporter (LTV-Tet3G-mCherry; VectorBuilder cat. VB900088-2776tfj). For generation of an inducible reprogramming C2C12 cell line,

we used a CMV driven Tet3G-T2A-Hydro vector (LTV-Tet3G-Hygro; VectorBuilder cat. VB180123-1018bxq).

We packaged lentivirus by transfecting HEK293T cells with LV-MAX lentiviral packaging plasmids (Gibco) and the LTR-containing

transfer vector of interest using Lipofectamine 3000 (Gibco). We collected supernatant from the viral packaging cells 24 and 48 hours

after transfection, cleared supernatant by centrifugation, filtered supernatant with 0.45 mm filters, and concentrated the cleared su-

pernatant using PEG-it precipitation reagent (SystemBio). Lentiviral constructs were titered by transducing HEK293T cells with serial

dilutions of virus and measuring fluorescent reporter expression frequency after 72 hours. We also prepared lentiviral particles

through commercial vendors that use similar protocols.

Lentiviral transduction
We performed lentiviral transductions using a standard spinfection method for all cell types. For adipogenic cells, we mixed the

appropriate viral titer with complete growth media supplemented with [8 mg/mL] polybrene and replaced growth media with the

viral suspension. We centrifuged cells in well plates at 2000 x g for 1 hour and incubated overnight before exchanging growth

media. For MSCs, we similarly added viral suspension, centrifuged cells at 2000 x g for 1 hour, and incubated cells overnight

before exchanging media. For primary myogenic cells, we added viral suspension and transduced by spinfection for one hour

at 1,500 x g with a polybrene adjuvant ([8 mg/mL] in media). We transduced C2C12 myoblasts using the same protocol used

for primary myogenic cells.
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Partial reprogramming with polycistronic vectors
We performed partial reprogramming in adipogenic cells using LTV-Y4TF and LTV-Tet3G-eGFP. We transduced at MOI 30 in growth

media containing polybrene ([8 mg/mL]) by spinfection using a 1 hour centrifugation at 20003 g. We replaced growth media after an

overnight incubation and began a three day pulse of Dox ([4 mg/mL]), exchanging media every 24 hours, followed by a three day

chase. We performed the same protocol for muscle-derived MSCs using LTV-Y4Tf and LTV-Tet3G-mCerulean each at MOI 10.

For muscle-derived MSCs, we also included a control group transduced with virus, but never exposed to Dox. Following the chase

period, cells were dissociated and we sorted cells expressing both LTV reporters (LTV-Y4TF : mCherry, LTV-Tet3G : eGFP or mCer-

ulean) against all other cells by FACS. This sorting allowed us to enrich for transduced cells and profile treated (dual transgene pos-

itive) and untreated (missing at least one transgene) conditions to individual cells from within the same well, serving as an in situ con-

trol. To evaluate the duration of partial reprogramming effects, we performed three independent long-term chase experiments using a

3 day Dox pulse/10 day chase schedule. After cell sorting, cells from these longer duration experiments were fixed by incubation in

ice-cold 80% methanol for 30 minutes at -20oC and stored at -80oC prior to library preparation.

Screening Yamanaka Factor subsets
We performed a screen of Yamanaka Factor subsets in two distinct experiments in MSCs. In the first experiment, we seeded cells in

24 well plates and delivered each combination of Yamanaka Factors to one well of the plate at high MOI (MOI = 8) for each virus. We

delivered a tetracycline-transactivator virus (LTV-Tet3G-mCherry) with all combinations (MOI = 8). Before sequencing, we labeled the

complexity of each perturbation (e.g. number of unique factors) with a unique cholesterol modified oligo to compare to our in silico

demultiplexing. We also included a well of doxycycline untreated and six wells of doxycycline treated, untransduced cells as addi-

tional sources of non-treated controls. In the second experiment, we seeded cells in 6 well plates and delivered all Yamanaka Factors

in a pool to each well. We transduced one well per animal at both low and moderate MOIs (MOI = 3, 6) and pooled cells prior to

sequencing. Two MOIs were used to increase representation of more complex perturbations. In both experiments, we pulsed Ya-

manaka factors by introducing doxycycline [4 mg/mL] for three days and chased for 3 days. We likewise performed pooled screening

in two distinct experiments for adipogenic cells. In the first experiment, we isolated cells from two young and two aged animals and

transduced with MOI 8. In the second, we isolated cells from three young and three aged (30months old) animals and trasduced with

MOI 8. Adipogenic screens were performed with 100,000 cells/well in 6 well format.

Partial multipotent reprogramming in myogenic cells
We performed partial reprogramming withMsx1 in myogenic cells in two independent experiments. In both experiments, we seeded

100,000 myogenic cells/well in a 6 well plate in myogenic growth media. We transduced cells at MOI 15 with LTV-Msx1 and LTV-

Tet3G-mCherry. We incubated cells for 12 hours then exchanged viral suspension with fresh growth media containing [4 mg/mL]

Dox. We replaced media daily for three days with Dox, then began a chase period where Dox-free media was used. We used a three

day chase for the first experiment and a four day chase for the second. We sorted for cells expressing fluorescent reporters for both

transgenes against other cells by FACS. This sorting allowed us to enrich for transduced cells and profile treated (dual transgene

positive) and untreated (missing at least one transgene) conditions to individual cells from within the same well, serving as an in

situ control.

Single cell RNA-seq
We performed cell hashing with cholesterol-modified oligos (CMOs) to label cells from individual animals with unique barcodes. We

used a unique group of 1-2 CMOs (Integrated DNA Technologies) for cells from each animal and labeled cells following the MULTI-

seq protocol (McGinnis et al., 2019). Single cell RNA-seq libraries were prepared using the Single Cell Gene Expression v3.1 chem-

istry (10x Genomics, Pleasanton, CA). Single Cell Gene Expression v3 chemistry was used for 10d chase experiments in adipogenic

cells. Cells were emulsified using the Chromium controller (10x Genomics) and libraries were subsequently prepared following the

library kit protocol. We ran young and aged cells in separate lanes of the 10x instrument for all experiments to provide the highest

fidelity sample demultiplexing. For all experiments except the pooled screens, we additionally ran transgene-positive cells carrying

both the reprogramming vector and a tetracycline-transactivator and transgene-negative cells (lacking at least one vector) in sepa-

rate lanes. We added the MULTI-seq additive primer during the cDNA amplification step to allow for CMO barcode amplification, as

described in the MULTI-seq protocol. For myogenic reprogramming experiments, we combined myogenic cells with highly distinct

cell types prepared for unrelated experiments in the same lane and extracted myogenic cells in silico for analysis. We also pooled

myogenic cells derived from different animals without CMO barcoding to avoid cell loss for this rare cell type. Fixed cells from

long-term chase experiments were first resuspended in rehydration buffer (0.4% bovine serum albumin, 1 mMDTT, 0.2 U/mL NxGen

RNase inhibitor in 3X SSC buffer) and pooled across animals by age and treatment condition for library preparation.

Read alignment and cellular demultiplexing
We pseudoaligned reads to the mm10 reference genome using ‘‘kallisto’’ and performed cell barcode demultiplexing and UMI read

aggregation using the ‘‘kallisto — bustools’’ workflow (Bray et al., 2016; Melsted et al., 2019). For experiments with transgenic con-

structs, we modified the mm10 reference to include lentiviral genomes as additional chromosomes in the reference genome. This

allowed us to detect the presence of transgenic transcripts in our sequencing data.
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We assigned MULTI-seq library reads to cell barcodes using ‘‘kite’’ (Gehring, 2021). For pooled screening experiments, we addi-

tionally quantified the number of lentiviral transgene barcodes in each cell using ‘‘kite’’.

mRNA profile denoising, latent variable inference, and data integration
We denoised mRNA abundance profiles using scVI (Lopez et al., 2018) models with 64 latent variables. We fit scVI models for 1000

epochs using early stopping to minimize the evidence lower-bound (ELBO). For MSC pooled screening experiments, we integrated

our arrayed and pooled transduction experiments by injecting batch covariates into the scVI model. Similarly, we used batch covar-

iate injection to integrate across independent adipogenic pooled screening experiments and myogenic multipotent reprogramming

experiments. For the latter application, we reduced the latent space size to 32 variables to avoid overfitting to a smaller dataset. For

myogenic experiments, we additionally employed ‘‘harmony’’ integration on a PCAdecomposition of the scVI latent space to account

for batch effects across independent experiments (Korsunsky et al., 2019). To construct a shared latent space between adipogenic

cells and MSCs, we fit an scVI model to both cell populations simultaneously. To integrate our adipogenic cell experiments with

different chase periods, we fit an scVI model with batch covariate injection and a 16-dimensional latent space, using only the

3,000 most highly variable genes as input to improve integration performance (Luecken et al., 2022). We separately fit a model using

all genes as input for differential expression analysis. For all experiments, we constructed a nearest neighbor graph in the scVI latent

space and projected this graph into two dimensions for visualization with UMAP.

MULTI-seq demultiplexing
We used the ‘‘hashsolo‘‘ approach to demultiplex MULTI-seq read counts in both adipogenic and MSC experiments with a prior dis-

tribution of ½0:02; 0:94;0:04� for negative, singlets, and doublets respectively (Bernstein et al., 2020). Wemanually verified ‘‘hashsolo’’

classifications by clustering cell profiles using CMO counts and inspecting read distributions. We adjusted cell labels based on

manual inspection and thresholding where appropriate. We only used confident classification calls for animal-specific analysis.

Bulk RNA-seq of young and aged MSCs
We performed bulk RNA-seq on young and agedMSCs in three independent experiments. Cells were collected from three young (3-

4 months) and three aged (20-24 months) animals in each experiment. In the first and second experiment, freshly-isolated cells were

cultured for 11-14 days before RNA collection In the third experiment, cells from the second fresh cell experiment were cryopreserved

in Recovery Cell Culture Freezing Media (Gibco), then thawed and cultured for 7 days before RNA collection. RNA was isolated from

all cells using a Zymo Quick RNA kit (Zymo Research) and RNA-seq libraries were prepared with NEBNext Ultra II Directional RNA

Library Prep Kit (New England Biolabs). Libraries were sequenced on an Illumina NovaSeq. We pseudoaligned reads with kallisto

(Bray et al., 2016) and quantified differential expression with sleuth (Pimentel et al., 2017). We extracted an aging gene signature

by selecting genes that changed in the same direction with age under a loose FDR threshold (q< 0:4) across both freshly isolated

cell experiments and cryogenically preserved cell experiments. This procedure yielded a signature of 198 aging genes which we

used to score aging gene expression in our MSC SOKM reprogramming experiment.

Estimating the contribution of covariates to total variation
We estimated the contribution of experimental covariates (age, transgene treatment) to the total variation observed in our experi-

ments using ANOVA. We treated the scVI latent encoding as a set of response variables and fit linear models for each variable of

the form zj � age+ treatment+ age : treatment where zj is a latent variable. We also assessed the contribution of the animal-of-origin

for each cell using animal-specific labels derived fromMULTI-seq demultiplexing. We performed ANOVA as above with animal-spe-

cific labels using models of the form zj � age � treatment+ animal, where ‘‘animal’’ is a label specific to each ‘‘age:treatment’’ com-

bination because we ran ‘‘age:treatment’’ combinations in separate library preparation reactions. We included ‘‘negative’’ classifica-

tions from ‘‘hashsolo‘‘ in this regression in case a CMO hashing failure captured structured variation.

Differential expression
We performed differential expression testing across binary contrasts by estimating log-fold change distributions for each gene using

Monte Carlo approximations from the scVI posterior distribution (Boyeau et al., 2019). We estimated the false discovery rate (FDR) of

differential expression as the fraction of Monte Carlo samples that did not show a log-fold change above a minimum threshold

(jlog2a=bjR 0:5). To test continuous covariates and cell type:reprogramming interaction effects, we used logistic/Gaussian hurdle

models inspired by MAST (Finak et al., 2015) for individual genes and logistic models for gene program scores on the unit interval [0,

1], as previously described (Kimmel et al., 2020a).Weperformed FDRcontrol forMASTmodelswith the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995). We performed differential expression testing on pseudotime covariates using models of the form

‘‘Gene � Pseudotime’’. We tested cell type:reprogramming interactions with models of the form ‘‘Gene � Age+Cell Type+

Treatment+Cell Type : Treatment’’.

Gene set enrichment analysis
We performed enrichment analysis for Gene Ontology terms using Enrichr (Kuleshov et al., 2016). We performed rank-based Gene

Set Enrichment Analysis (GSEA) using the ‘‘fast GSEA’’ (Kuleshov et al., 2016) implementation of the GSEA algorithm (Subramanian

et al., 2005) and gene sets extracted from MSigDB (Liberzon et al., 2015).
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Generalized additive modeling of gene expression over pseudotime
We fit generalized additive models (GAMs) to express relationships between genes or gene programs and continuous pseudotime

coordinates.We fitGaussianGAMs of the form ‘‘Gene � Pseudotime’’ using six cubic splines through the PyGAM framework (Servén

et al., 2018). We represent expression trends over pseudotime using the mean value of GAM predictions along with the 95% con-

fidence interval.

Estimating aging magnitudes in transcriptional space
We estimated an agingmagnitude as the difference between young and aged cell populations. We estimated this difference between

two populations using the maximum mean discrepancy (MMD) computed on scVI latent variables. scVI latent variables capture an

expressive, low-dimensional representation of gene expression and are therefore useful for this task. We computed the MMD our

previously described ‘‘scmmd’’ package over a series of bootstrap random samples to ensure robustness (Kimmel et al., 2020a).

Briefly, we sampled n = 300 cells from each population and computed an MMD at each of 500 iterations. We performed these het-

erochronic MMD comparisons to compare young, untreated cells to both aged, untreated cells and aged, reprogrammed cells. We

assessed the significance of changes in the MMD using theWilcoxon Rank Sum test across bootstrap iterations. We also performed

isochronic comparisons across animals of the age (i.e. young cells to young cells, aged cells to aged cells) as a control. For these

comparisons, we subset to the samples from each age that had the highest confidenceMULTI-seq labels as a conservativemeasure.

For young cells, we used Tg- cells, and for aged cells we used Tg+ cells, as these had the highest confidence MULTI-seq labels.

RNA velocity analysis
We counted estimated the fractions of spliced and unspliced reads for each transcript based on the alignment of reads to exons and

introns using ‘‘kallisto — bustools’’ to an mm10 reference genome from Ensembl (Bray et al., 2016; Melsted et al., 2019). We esti-

mated RNA velocity (La Manno et al., 2018) using the stochastic model implemented in ‘‘scvelo’’ (Bergen et al., 2020).

Pseudotemporal trajectory inference
We inferred pseudotime trajectories for adipogenic cells andMSCs using ‘‘scvelo’’. Briefly, we constructed a nearest neighbor graph

in the embedding space and weighted edges in the graph based on the directionality of RNA velocity vectors such that neighbors in

the path of the RNA velocity vector received higher transition probabilities. We then paired this matrix with the diffusion pseudotime

inference method (Haghverdi et al., 2016). We inferred pseudotime trajectories for myogenic cells using diffusion pseudotime anal-

ysis on a nearest neighbor graph constructed in diffusion component space.We selected root cells fromwithin the top decile ofSnai2

(primitive marker gene) expression.

To confirm the robustness of our trajectory inference results to the choice of pseudotime algorithm, we also performed pseudotime

analysis with ‘‘Palantir’’ (Setty et al., 2019). We chose the Palantir method based on reports of strong performance and because it

does not use any RNA velocity information during inference, providing an orthogonal approach to scvelo to confirm the robustness

of our results. We inferred pseudotime trajectories for adipogenic cells andMSCs using Palantir in amanner similar to scvelo. Palantir

applies a diffusion analysis to measure the distance from a root node to cells along the nearest neighbor graph, assigning each cell

both a coordinate of distance from the root and a probability of falling within one of an inferred number of distinct fate trajectories. We

chose root cells in each cell type from a cluster at the end of the reprogramming trajectory as projected with UMAP, then reversed the

inferred coordinate assignments so that higher numbers indicated more reprogrammed cells (note: the direction of the coordinate

numbers is arbitrary and does not effect analysis). Palantir inferred two trajectories in adipogenic cells, mapping to the adipogenic

and secretory basal states.We used the adipogenic cell trajectory for marker gene analysis by selecting cells with ¿50%probability of

falling into the adipogenic basal fate. Palantir inferred only a single trajectory for MSCs, matching our observation of a single basal

state. We also confirmed robustness using the ‘‘latent pseudotime’’ inferred purely from RNA velocity measurements by scvelo.

Phase simulations in RNA velocity fields
We performed phase simulations in RNA velocity fields using our previously described ‘‘velodyn’’ package (Kimmel et al., 2020a). For

both adipogenic cells and MSCs, we initialized n = 1000 phase points within the transiently reprogrammed cell population at posi-

tions x0 and evolved their positions based on the RNA velocity vectors of their neighbors for t = 500 timesteps with a step size of h =

0:5. We used an update rule

xt + 1 = xt + hVðxtjq;XÞ
wherewe update the current position xt to a newposition xt + 1 using an update functionVðxtjq;XÞ that infers a velocity vector vt from

k-nearest neighbors given parameters ðk; hÞ. We parameterize V as a stochastic function sampling from a weighted multivariate

Gaussian distributionNðm�;S�Þ where neighbors are weighted based on the distance in the embedding space from the query point.

Cellular age classification
We trained semi-supervised variational autoencoder models using the scANVI framework to discriminate cell age (Xu et al., 2019).

Prior to model training, we split our data into a training set (80%) and held-out test set (20%) with stratification. We trained scANVI

models for 100 unsupervised epochs (reconstruction loss only) and 300 semi-supervised epochs (reconstruction and classification
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losses) using 10%of the training set as validation data for early stopping.We evaluatedmodel performance based on the accuracy of

classifications in the held-out test set, unseen during model training.

Embedding reprogramming factor perturbations with scNym
We fit scNym cell identity classification models to discriminate MSCs transiently reprogrammed with different Yamanaka factor sub-

sets (Kimmel and Kelley, 2021). We subsampled a balanced training set from the full MSC pooled screening data by extracting n =

100 cells per factor combination. We treated all remaining cells as a held-out test set. We trained an scNymmodel on the training set

using nhidden = 128 hidden units per layer, a patience period of 30 epochs prior to early stopping, a maximum number of 150 epochs,

and default settings for all other parameters. For adipogenic pooled screening data, we followed a similar procedure but we

augmented the dataset by drawing 25 samples bx � pqðbxjxÞ from the scVI predictive posterior to use for training. Drawing samples

from the predictive posterior acts as a natural form of data augmentation given the quantitative estimates of uncertainty inherent in

the scVI model. We fit scNym models to a balanced dataset of 1250 posterior samples per class using the same procedure as

for MSCs.

We subsequently predicted factor combinations for all cells in each pooled screening experiment. We projected the scNym

embedding activations for visualization using UMAP.We computed the correlation of scNym predictions for each factor combination

by computing correlations among the columns of the scNym predicted class probability matrix byCells3Combinations
. For this latter anal-

ysis, we used only cells that were excluded from the scNym training set.

Scoring cell identity programs with scNym
We used scNym models to score the activity of specific cell identity programs in transiently reprogrammed cells. We fit semi-super-

vised, adversarial models using the Tabula Muris as a training set and our transiently reprogrammed cells as a target data set. We

used the ‘‘cell ontology class’’ annotations in the Tabula Muris as class labels. We fit models for up to 200 epochs and used early

stopping on a validation set held-out from the training data to select the best performing model. We fit separate models for the adi-

pogenic SOKM reprogramming experiment, the MSC SOKM reprogramming experiment, and the MSC pooled screen.

We used trained models to both derive an embedding and predict cell identities from within the Tabula Muris training set in our

transiently reprogrammed cells. We summed the likelihood of several similar cell identities to create a ‘‘Mesenchymal Identity’’ score

for each cell (identities: ‘‘mesenchymal stem cell’’, ‘‘mesenchymal cell’’, ‘‘stromal cell’’). We computed the entropy of cell identity as

the Shannon entropy of the cell identity probability vector predicted by scNym.

HðpÞ = �
XK
k

pk log pk

where k˛K are class indices, p is the identity probability vector, and Hð ,Þ is the entropy function.

Interpreting scNym models with expected gradient attributions
We interpreted scNym classifier predictions using the expected gradientmethod (Erion et al., 2021). The expected gradient approach

is an improvement on our previously described integrated gradient interpretation scheme (Kimmel and Kelley, 2021). We compute

expected gradients by allowing all cells in the training data set to serve as reference examples, then compute the attribution scores

for a class k by randomly sampling observations x that are predicted to be class k using the expected gradient formulation:

EGðxÞ = E

�����x � x0
����vfqðx0 +aðx � x0ÞÞk

vx

�

x0 �X;a � Unifð0; 1Þ
where EG is the expected gradient attribution for a single observation x, X is the training matrix, fq is the trained scNymmodel, and

fqðxÞk is the predicted probability of class k for observation x.

This procedure effectively compares the observation of interest x to many other observations in the training dataset x0 � X and

computes the gradient on the class score of interest. Importantly, the gradient on class score is not computed at the observation

x, but rather at some point randomly interpolated between the reference and the observation x0 +aðx � x0Þ where a � Uniformð0;1Þ.
We computed expected gradients using all cells of class k as observations and comparing against n = 100 reference examples for

each cell. We averaged the expected gradients for a given class across cells to extract attribution scores for that class.

Scoring aging gene expression in pooled screening experiments
To compare the impact of different Yamanaka Factor combinations on features of aging, we devised an ‘‘Aging Score’’ based on

genes differentially expressed with age in MSCs. We first identified genes that were significantly differentially expressed (q<

0:10) in the same direction in control MSCs for both our polycistronic reprogramming experiment and the pooled screens. We

took the intersection of this set with the set of genes that showed a significant restoration of youthful gene expression in any of

the Yamanaka Factor combinations (jlog2Aged=Youngj> 0:3;q< 0:1). This yielded a set of 234 aging genes that are influenced by
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reprogramming. We derived separate AgeUp and AgeDown scores using a standard gene set scoring method for the upregulated and

downregulated genes respectively (Tirosh et al., 2016). We then took the difference of these scores as the Aging Score:

Aging Score = AgeUp � AgeDown. We used a similar procedure for adipogenic pooled screening experiments to generate a set

of 801 aging genes and an associated aging score.

To quantify the effect of each combination on the age score, we fit a linear regression of the form:

Aging Score � Combination+Age using aged cells for all treatments and only control (NT) young cells as observation data. We

exclude young treated cells from the regression so that coefficients for each combination represent the effect of the combination

on aged cells. We extracted coefficients and their confidence intervals to compare across combinations (Figure 3F).

Scoring aging gene expression in myogenic multipotent reprogramming experiments
We re-analyzed publically available single cell RNA-seq profiles of young (3 months old) and aged (20 months old) myogenic cells

after in vitro differentiation to identify an aging gene signature (GEO : GSE145256) (Kimmel et al., 2020a). We extracted 329 genes

that were changed more than 2-fold between young and aged myogenic cells with a false discovery rate q< 0:10 (Wilcoxon Rank

Sum test, Benjamini-Hochberg FDR control). We then generated AgeUp and AgeDown scores as described above to construct an ag-

ing score. For visualization, we Winsorized the aging score to the ½3;97� percentile interval.

Analysis of orthogonal reprogramming effects
We extracted a set of ‘‘orthogonal’’ reprogramming genes that are unrelated to MSC aging by taking the set difference of significant

differentially expressed genes with reprogramming (q< 0:1, log2 fold-change > 0:25) and significant aging genes. We constructed the

aging gene set as the union of significant aging genes in our single cell experiment and our bulk RNA-seq aging signature. We then

computed gene set enrichments on the upregulated and downregulated orthogonal genes against the MSigDB Hallmark gene sets

using Enrichr. We extracted a set of aging genes for adipogenic cells as the significant differentially expressed genes with age in

transgene-negative, control cells.

We constructed an orthogonal linear projections using a combination of linear discriminant analysis (LDA) and principle component

analysis (PCA). We first fit an LDA decomposition to the data using the aging genes on the control cells only. We transformed all data,

including the reprogrammed cells, using this fit linear transformation to obtain a one-dimensional ‘‘aging axis.’’ We then computed an

‘‘orthogonal axis’’ by performing principle component analysis on all non-aging genes and selecting the top principle component. To

visualize gene set activity in the embeddings, we scored Hallmark gene sets with an established procedure (Tirosh et al., 2016), Win-

sorized scores to the 2nd and 98th percentile, then scaled scores ½0;1�.

Data integration and comparison of polycistronic and pooled MSC reprogramming
To compare the transcriptional effects of MSC reprogramming with our polycistronic and pooled systems, we performed batch

correction on both data sets using a conditional scVI model. After batch correction with scVI, we performed data integration using

harmony on a PCA representation derived from decomposition of the batch-corrected scVI latent space (Figures S18A–S18E).

To quantify the degree of integration, we computed the entropy of mixing as:

H
�
pLocal

�
= �

XK
k = 1

pLocal
k log pLocal

k

where pLocal is a vector of class proportions in a local neighborhood and k˛K are class indices.

We computed the entropy ofmixing on a nearest neighbor graph constructed in using theHarmony-integrated PCA representation.

We sampled 300 neighborhoods across the graph and chose 100 nearest neighbors for each neighborhood (Figure S18B).

To investigate the effect of each system on individual genes, we extracted the most confident differentially expressed genes

(DEGs) induced by reprogramming from the polycistronic reprogramming experiment (pðDEÞR0:95;jlog2ðTg+ =Tg �ÞjR1), yielding

215 DEGs.We then computed the correlation in fold-changes between polycistronic (log2ðTg+ =Tg �Þ) and pooled (log2ðSOKM =NTÞ)
experiments (Figure S18F). We further partition the DEGs into groups where fold-change directions were matched or mismatched in

the polycistronic and pooled experiments. Themajority of mismatched DEGswere downregulated in the polycistronic condition, and

upregulated (not necessarily significantly) in the pooled condition (Figure S18G). We computed gene set enrichments on these genes

using theMSigDBHallmark (Liberzon et al., 2015) gene sets and Enrichr (Kuleshov et al., 2016) (Figure S18H). We further computed a

‘‘polycistronic reprogramming score’’ based on separate upregulated (ReprogUp) and downregulated (ReprogDown) gene scores

derived from the polycistronic unregulated and downregulated DEGs as Reprog = ReprogUp � ReprogDown using an expression-

level normalized gene scoring method (Tirosh et al., 2016) (Figure S18I).

Analysis of 10 day chase experiments in adipogenic cells
We observed lower detection rates for the lentiviral transgenes in 10d chase experiments, possibly due to the methanol fixation pro-

cedure. To ensure that our results were conservative, we removed cells in the reprogramming sample lanes where the reprogram-

ming vector was not directly observed for differential expression analysis. We used ‘‘kite’’ to determine if the polycistronic reprog-

ramming factors were detected in each cell, employing a 21-mer sequence at the 3’ end of the mCherry reporter as a feature

barcode. We considered the reprogramming vector to be detected if either the ‘‘kite’’ barcode was observed or ‘‘kallisto’’ uniquely
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mapped a read elsewhere in the construct. Reprogramming-induced fold-changes estimated with this conservative procedure were

highly similar to fold-changes estimated without it (r > 0:88;p< 0:0001).

We analyzed the pseudotime distribution of adipogenic cells in 10 day chase experiments by first integrating 10d chase experi-

ments with our existing 3d chase experiment using scVI. We then inferred pseudotime coordinates for the 10d chase cells by map-

ping coordinates from the 3d chase experiment using a k-nearest neighbors regressor with k = 30 nearest neigbors (scikit-learn im-

plementation). We compared the pseudotime distributions of reprogrammed cells in the 10d chase experiments to reprogrammed

cells in the 3d chase experiment with theWilcoxon rank sum test. For gene set analysis, we generated a set of reprogramming genes

that were significantly differentially expressed at the 3d timepoint and 10d timepoint, or only at the 3d timepoint and computed en-

richments with Enrichr using ChEAv3 andMSigDB Hallmark gene sets. For fold-change correlation analysis, we computed the Pear-

son correlation of log2ðTg + =Tg � Þ fold-changes between 3d and 10d chase experiments for (1) rejuvenated genes significant in

both experiments and (2) rejuvenated genes significant only in the 3d experiment and detected in at least 2% of cells on one side

of the contrast in the 10d experiments (i.e. at least 2% of Tg+ or Tg- cells). We transferred cell state labels from the 3d chase exper-

iment to the new experiments by training a linear support vector classifier to predict state labels from highly variable gene expression

in 3d chase cells, then predicting labels for 10d chase cells.

We also analyzed the 10d chase experiments independently using a separate scVI integration model. The latent space of this

model revealed more nuanced cell states at the 10d timepoint. We analyzed the distribution of cells among these states using a

c2 test of the treatment (Tg+/-) x state contingency table. We investigated the activity of the Gene Ontology biological process ‘‘fatty

acid metabolic process’’ scoring the gene set activity using an established procedure (Tirosh et al., 2016). We tested the significance

of changes in program activity across groups using the Wilcoxon rank sum test.

Re-analysis of iPSC reprogramming timecourse
We re-analyzed data from a previous single cell RNA-seq study of mouse embryonic fibroblast to iPSC reprogramming (GEO :

GSE122662) (Schiebinger et al., 2019). We trained an scVI model to denoise the data, learn latent variables, and perform differential

expression as above.

Re-analysis of Tabula Muris Senis adipose tissue aging
We re-analyzed data from the TabulaMuris Senis single cell RNA-study ofmouse aging in the adipose tissue (GEO : GSE149590) (The

Tabula Muris Consortium, 2020). We normalized expression data with a logðCountsPerMillion + 1Þ transformation, selected highly

variable genes, and embedded cells with UMAP on a PCA derived nearest neighbor graph. We performed differential expression

with a two sample t-test using scanpy (Wolf et al., 2018).

Re-analysis of reprogramming in murine B cells
We re-analyzed single cell RNA-seq data from a previous timecourse study of OSKM reprogramming in murine B cells (Francesconi

et al., 2019). We obtained count data from NCBI GEO (GSE: GSE112004). We fit an scVI model to denoise the raw counts and ex-

tracted samples from the OSKM reprogramming timecourse. For analysis, wemerged samples of OSKM reprogramming at the 2 day

and 4 day timepoint as partially reprogrammed and treated the 0 day timepoint as a control.

Re-analysis of in vivo partial reprogramming in the murine retina
We re-analyzed RNA-seq data from a previous study of in vivo partial reprogramming with Pou5f1/Oct4, Sox2, and Klf4 (OSK) deliv-

ered using AAV2 vectors in themouse retina (NCBI SRA: PRJNA655981) (Lu et al., 2020).We obtained raw sequencing data fromSRA

and performed transcript quantification using kallisto with an mm10 reference. We performed differential expression analysis using

DESeq2 (Love et al., 2014) fitting regressions for the effect of age (Gene � Age) to compare 5 month old and 12 month old samples

and effect of transgenic OSK expression (Gene � OSK) in 12 month old animals .

Re-analysis of in vivo partial reprogramming in the murine heart
We re-analyzed RNA-seq data from a previous study of in vivo partial reprogramming with SOKM in the heart using a tissue-specific

germline inducible mouse model (NCBI SRA: PRJNA674836). We acquired raw sequencing reads and performed transcript quanti-

fication as for the retina reprogramming dataset. We performed differential expression analysis using DESeq2 to assess the effect of

reprogramming for 6 days (Gene � OSKM+Dox6days).

Re-analysis of in vivo partial reprogramming in the murine skeletal muscle
We re-analyzed RNA-seq data from a previous study of in vivo partial reprogramming with SOKM in the skeletal muscle using a tis-

sue-specific germline inducible mouse model (NCBI GEO: GSE148911). We obtained pre-quantified counts per sample from GEO

and performed differential expression analysis with DESeq2 to assess the effect of reprogramming for 2 days in the soleus muscle

relative to a Cre- control.

Somatic identity and pluripotency program scoring in public partial reprogramming data
We scored somatic identity and pluripotency programs in public partial reprogramming data of four distinct cell types (B cells, skel-

etal muscle, cardiomyocytes, retinal ganglia) (Francesconi et al., 2019;Wang et al., 2021; Chen et al., 2021; Lu et al., 2020) using both
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(1) marker gene and (2) cell identity classifier approaches. We quantified the expression of pluripotency marker genes (Nanog, Fut4,

Cd34, Sall4, Utf1, Zfp42) outside the Yamanaka Factor set in each of the cell types and scored a set of somatic identity genes unique

to cell type with an established gene set scoring approach (Tirosh et al., 2016) (genes available in Table S1). We assessed the sig-

nificance of changes in each using a likelihood ratio test of linear models with the full form Gene � Cell Type+Reprog and reduced

form Gene � Cell Type. We controlled the false discovery rate with the Benjamini-Hochberg procedure (Benjamini and Hoch-

berg, 1995).

We also trained an scNym cell identity classifier to discriminate samples from the three cell types partial reprogrammed in vivo

(cardiomyocyte, skeletal muscle, retina) and ESCs using data from the ARCHS4 RNA-seq compendium (Lachmann et al., 2018).

We used all samples in ARCHS4 annotated with the key words ‘‘cardiomyocyte’’, ‘‘skeletal muscle’’, ‘‘retina’’, and ‘‘embryonic

stem cell’’ to build our training set. Prior to training, we removed the Yamanaka Factor genes Pou5f1, Sox2, Klf4, andMyc to ensure

our model scores would not be biased by Yamanaka Factor expression in data sets where the endogenous and transgenic factors

can not be discriminated. After fitting the model, we embedded the RNA-seq data from in vivo partial reprogramming studies and

extracted the probabilistic cell type assignments for the ESC type and the true somatic cell type of each sample. We then normalized

these scores ½0;1� within each experiment to generate Pluripotency and Somatic identity scores respectively. We tested for a statis-

tically significant influence of reprogramming on each of these scores using the Wald test on a linear model of the form Program �
Cell Type+Reprog.

Timecourse partial reprogramming and population analysis in C2C12 myoblasts
To enable large scale partial reprogramming experiments, we built a C2C12 murine myoblast cell line with stable integration of our

barcoded reprogramming system. We first transduced C2C12 cells with fresh viral supernatant for LTV-Tet3G-Hygro. We selected

for stable integration of the transactivator over a period of two weeks by culturing cells in C2-growth media supplemented with

0.5 mg/mL of Hygromycin B (Gibco). We term these cells C2-Tet3G. We subsequently introduced reprogramming vectors by trans-

ducing C2-Tet3G cells with LTV-S-BC, LTV-O-BC, LTV-K-BC, and LTV-M-BC at MOI 10 for each vector, for a total MOI 40. We

expanded transduced C2-Tet3G cells for four days and then sorted for eGFP positive cells to isolate cells with integrated reprogram-

ming genes. We expanded these cells in Hygromyin supplemented media and sorted a second time to increase purity. We term the

final product C2-iYF cells (C2C12, inducible Yamanaka Factors).

For the timecourse reprogramming experiment, we seeded 200,000 C2-iYF cells into each well of six, 6-well plates. After an over-

night incubation, we replaced media with C2-plating media with or without Dox at 4 mg/mL depending on the experimental condition.

Partial reprogramming treatment cells were grown in Dox-containing media for 3 days, then switched to Dox-free media. Negative

control wells were grown in Dox-free media continually and positive control wells were grown in Dox-containing media continuously

throughout the timecourse. Media was changed every 24 hours. At 1, 3, 4, 5, 6, and 8 days post-Dox introduction, we passaged a

subset of wells and analyzed cell viability by propidium iodide staining and flow cytometry and saved cells for RNA-seq in RNAlater

reagent (Gibco). We counted cells using an Invitrogen Countess II on days 4, 6, and 8. We isolated RNA from cells in RNAlater using

TRIzol and Zymo Directzol spin columns, then prepared libraries with the NEBNext Ultra II Directional RNA Library Prep Kit (New En-

gland Biolabs). We also measured proliferative histories in the same cell line system by staining cells with CellTrace Blue (Invitrogen)

after 3 days of Dox-induction, then measured CellTrace intensity after 3 days of reprogramming factor withdrawal. CellTrace dis-

played broad peaks in the C2C12 model, likely due to large variations in cell size.

RNA-seq data was pseudoaligned with kallisto and differential expression analysis was performed with sleuth (Pimentel et al.,

2017). We extracted somatic muscle identity genes by comparing day 10 to day 1 control cells. We extracted reprogramming genes

by comparing day 3 partially reprogrammed cells to day 3 negative control cells. We selected significant differentially expressed

genes where q< 0:05 and the model coefficient jbj> 1:. We performed PCA on the somatic muscle genes and reprogramming genes

separately, then extracted the first PC from each decomposition for presentation.

Mathematical modeling of population dynamics in partial reprogrammed cells
We modeled a change in proportion of cells in a ‘‘suppressed’’ or somatic state during partial reprogramming using ordinary differ-

ential equations (ODEs) that represent a purely selection/expansion based mechanism for a change in proportions. We refer to this

model as a ‘‘substitution hypothesis’’. The form of these models follows from our observations that (1) total cell numbers were con-

stant across a partial reprogramming timecourse in C2-iYF cells, (2) cell death rates were constant over time and equivalent between

somatic and suppressed states. We fit the parameters based on our observation that 75% of partially reprogrammed adipogenic

cells were suppressed at day 3, but only 11% by day 10. We found that the resulting models were inconsistent with several empirical

observations, suggesting the ‘‘substitution hypothesis’’ could not explain our results.

Let rðtÞ be the fraction of cells in suppressed states and sðtÞ = 1 � rðtÞ be the fraction of cells in somatic states. We will assume a

constant number of cells over time NðtÞ = Nð0Þ, and therefore omit specific cell numbers. Let l be a constant rate of cell death,

informed by the constant cell death rates observed in our experiments. We can then represent the decay in the number of cells in

suppressed states with an ordinary differential equation:

dr

dt
= � lrðtÞ
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which we can solve for the cell death rate l as:

rðtÞ = rðt = 0Þe� lt
l = �
�
logðrðtÞÞ � logðrð0ÞÞ

t

�

At each time t in this model, a fraction of somatic cells qðtÞwill need to divide tomaintain the population, whichwe can represent as:

qðtÞ =
l

sðtÞ � lsðtÞ
From this estimate of the fraction of dividing cells, we can solve for the doubling time tðtÞ required to match observations based on

the exponential growth equation:

2sðtÞ = sðtÞeqðtÞt
tðtÞ : = logð2Þ=qðtÞ
From these functions, we can tabulate the cell death rate and cell doubling time required for the substitution hypothesis to explain

our observed state proportions. We found that these requirements were inconsistent with our measurements of cell death rate and

cell doubling time, and similarly inconsistent with reported cell doubling times for our cell systems in the literature.

mRNA and protein half-life analysis
We estimated the half-life of Yamanaka Factor gene programs at the mRNA and protein level using two half-life reference datasets

(Sharova et al., 2009; Li et al., 2021) and the TRRUST and Enrichr transcription factor target gene lists (Keenan et al., 2019; Han et al.,

2018). For mRNA half-life estimates, we generated a list of all TRRUST target genes of the Yamanaka Factors and the Yamanaka

Factors themselves and extracted mRNA half-lives where available from the reference. For protein half-life estimates, we extracted

all available protein half-lives for the same gene set, and also added protein half-lives for the top-three Enrichr TF gene set target

genes where available. No protein half-life estimate was available for Pou5f1, so we used Pou4f1 as an imperfect proxy. We added

these additional genes due to the smaller number of genes with high-quality protein half-life information relative to themRNA dataset.

We computed the median half-life of each Yamanaka Factor program’s mRNA hM and protein hP, then estimated the fraction of

mRNA available after d days of chase Md as:

Md =
	
224d=hM


� 1

and the corresponding fraction of protein available after d days of chase Pd as:

Pd =
	
224d=hP


� 1

+
Xd� 1

i = 1

	
224ðd� iÞ=hP


� 1

Mi

where the final term accounts for protein generated by the mRNA that is still present after induction has ceased. Both formulas

quantify the fraction of mRNA/protein available relative to the maximal level achieved after our transgene induction pulse.

QUANTIFICATION AND STATISTICAL ANALYSIS

We performed statistical testing using the Wilcoxon Rank Sum test or the t-test for two-sample comparisons as appropriate given

distributional assumptions. We used theWald test or the log-likelihood ratio test to evaluate the significance of coefficients in regres-

sion models. We performed Monte Carlo sampling to test for differential expression across binary contrasts in denoised, single cell

RNA-seq data. For independent tests, we used a significance level of a = 0:05 and used the Benjamini-Hochberg procedure to con-

trol the false discovery rate (FDR) where appropriate. We used an FDR cutoff of q = 0:10 for RNA-seq differential expression. We

display mean estimates and 95% confidence intervals (CIs) for regression coefficients in graphical plots. We likewise display

mean estimates and 95% CIs for generalized additive model spline fits. Statistical details for all tests are available in the figure leg-

ends and in-line in the results.
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